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Airway inflammation is central to the pathogenesis of both
airway remodelling and parenchymal destruction in
chronic obstructive pulmonary disease (COPD).
Neutrophils, macrophages, and CD8+ T lymphocytes have
been implicated in a number of studies, but a detailed
profile of disease-phenotype specific inflammation has yet
to emerge. The heterogeneity of the disease has hindered
data interpretation while extrapolation of the results of
relatively non-invasive studies to the actual pathology
found in the distal lung is difficult. Moreover, prominent
studies have had frequently conflicting results. Further
investigations are needed to marry the different clinical
phenotypes of COPD to their respective inflammatory
profiles in the airways and thus improve our understanding
of the pathogenesis of the disease as a whole.
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A
sthma has been the dominant focus of
airways research interest, at least until
recent times. A multitude of studies have

examined its tapestry of airway inflammation
and remodelling. Sophisticated theories have
resulted, encompassing environmental exposures,
epithelial repair, and epithelial-mesenchymal
signalling.1 Therapeutic successes have followed,
encouraging more interest and further investment.
Chronic obstructive airways disease (COPD), on
the other hand, has suffered from the unflattering
contrast. COPD is generally considered a self-
inflicted condition that results, in the majority,
from years of smoking and the only effective
treatment to date is long term oxygen therapy. Its
profile of airways inflammation is, in retrospect,
unsurprising. Neutrophils, macrophages, and
CD8+ T lymphocytes are, after all, predictable
responders to a sustained noxious insult. However,
in recent years something of a renaissance has
occurred. COPD inflammation research has bur-
geoned, new treatments are being tested,2 and
interests are focused now not so much on the cell
types but more on the ‘‘whys and wherefores’’ of
their actions in COPD.

Historically, the link between airways inflam-
mation and lung pathology in smokers had long
been suspected. In the 1950s a post-mortem study
of centrilobular emphysema revealed ‘‘bronchioli-
tis’’ of the airways leading into emphysematous
parenchyma.3 Further studies confirmed not only
that peripheral airways inflammation is associated
with remodelling and destruction,4–8 but also that
its severity increases in parallel with emphysema
severity.8–10 They also revealed that bronchiolar
inflammation and emphysema share the same

anatomical distribution,9 11 that small airways
disease temporally precedes emphysema,4 and that
bronchiolar inflammation severity correlates with
functional impairment.5 8 12 It was therefore
hypothesised that centrilobular emphysema results
from an inflammatory reaction that spreads
centrifugally from the bronchioles to involve the
parenchyma.9

Animal model studies and in vitro experiments
have explored the roles of specific inflammatory
cells in COPD, while bronchoscopy, sputum
induction and lung resection studies have
described airways inflammation in vivo. All have
helped to confirm dominant positions in the
inflammatory hierarchy for neutrophils,13–15

macrophages,16–18 and CD8+ T lymphocytes.19–21

Other inflammatory cells such as mast cells,16

eosinophils,22 and natural killer cells16 have been
credited with less importance.

KEY INFLAMMATORY CELLS IN COPD
Neutrophils
Neutrophils are front line defensive cells of the
immune system and a source of reactive oxygen
metabolites, inflammatory cytokines, lipid med-
iators, antibacterial peptides, and tissue dama-
ging enzymes.23–25 They are strongly implicated in
both the generation of mucous metaplasia in
chronic bronchitis and the destruction of lung
tissue in emphysema.

Neutrophil products induce mucus hypersecre-
tion by both an acute secretagogue effect and by
augmentation of the bronchial mucus producing
apparatus.26 27 Mucin gene expression has been
proposed as the principal factor governing the
differentiation of epithelial cells into goblet
cells.28 Neutrophil elastase (NE) and reactive
oxygen species independently increase epithelial
mucin mRNA and protein expression in vitro,29–31

possibly via ligand independent transactivation
of the cell surface epidermal growth factor
receptor (EGFR).29 In asthma the epithelial
mucin, MUC5AC, and the EGFR are co-localised
in airway epithelial goblet cells.32 As severe
asthma is associated with both massively
increased mucus production and neutrophilic
airway inflammation,33–36 it has been hypothe-
sised that neutrophil driven goblet cell metapla-
sia is a component of asthma airways
remodelling. In COPD, MUC5AC is the principal
secreted mucin of the epithelium37 and, like

Abbreviations: BAL, bronchoalveolar lavage; COPD,
chronic obstructive pulmonary disease; ECP, eosinophilic
cationic protein; EGFR, epidermal growth factor receptor;
FEV1, forced expiratory volume in 1 second; IFN-c,
interferon c; IL, interleukin; LTB4, leukotriene B4; MMP,
matrix metalloproteinase; MPO, myeloperoxidase; NE,
neutrophil elastase; NK, natural killer; TNF-a, tumour
necrosis factor a
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severe asthma and other hypersecretive diseases such as
bronchiectasis and cystic fibrosis, neutrophilic airways
inflammation is a key disease feature.13 33 34 38 39 Figure 1
demonstrates epithelial MUC5AC immunochemical staining
in a bronchial biopsy specimen taken from a smoker with
COPD, indicating its clear expression.

The neutrophil’s standing as a potential key cell in
emphysema has been assured since inherited a1-antitrypsin
deficiency was first linked with the disease. The theory
emerged that the neutrophil was the perpetrator of a
protease/antiprotease imbalance in the lung.25 To support
this, animal model studies have shown that administration of
purified NE produces emphysema,40 while deficiency of
endogenous NE affords protection against emphysema
following exposure to cigarette smoke.41 Human studies have
demonstrated NE in emphysematous tissue,42 increased
products of elastase activity in urine and plasma from
patients with COPD,43 and a correlation between emphysema
severity and elastase levels in peripheral blood neutrophils.44

In vitro, peripheral blood neutrophils from subjects with

emphysema digest more extracellular connective tissue
protein than those taken from controls.45

The in vivo evidence linking neutrophils with COPD is
abundant. Analyses of induced sputum14 15 46 and airway
lavage fluid22 47 48 consistently demonstrate increased neutro-
phil counts and neutrophil derived enzyme levels in COPD,
both when stable and during exacerbations.46 49–53 Within the
airway wall, however, confirmation of neutrophilic airway
inflammation has proved more elusive. Some investigations
showing airway wall neutrophilia16 18 54 are countered by
others that do not,17 19 22 an inconsistency that may reflect the
short tissue lifespan of the infiltrating neutrophil. More
recent studies have diversified their focus in an attempt to
‘‘capture’’ the elusive neutrophil. Bronchial biopsy specimens
taken during a COPD exacerbation revealed higher neutro-
phil counts than those taken in stable disease.55 Analyses of
airway smooth muscle have shown a relationship between
neutrophil infiltration and both computed tomographic
measurements of air trapping56 and severity of airflow
obstruction.57 The investigators speculated that exposure to
inflammatory mediators could affect the structure and
contractility of airway smooth muscle, contributing to
peripheral airways obstruction. This complements reports of
a strong relationship between peripheral airways dysfunction
in COPD and sputum neutrophil counts.58 Figure 2 shows
immunochemically stained neutrophils infiltrating the bron-
chial submucosa and epithelium in a bronchial biopsy
specimen, consistent with this hypothesis.

Macrophages
Macrophages account for the majority of inflammatory cells
recovered by airway lavage, regardless of whether or not the
subjects are non-smokers, healthy smokers or smokers with
airways disease.48 59 Compounds released by macrophages
include reactive oxygen species, chemotactic factors, inflam-
matory cytokines, smooth muscle constrictors, mucus gland
activators, and extracellular matrix proteins. Also included is
an array of matrix metalloprotease enzymes (MMPs). These
can, when combined, degrade a similar spectrum of proteins
to neutrophil enzymes25 and they are also believed to
facilitate leucocyte migration and infiltration into injured
tissues.60 Although macrophages do not transcribe the NE
gene, their ability to internalise the enzyme has led to the
proposal that macrophage released NE can add further to the
proteolytic potential of the cell.61

Although macrophages have the theoretical potential to
induce mucus hypersecretion via products with secretagogue
activity such as leukotriene B4 (LTB4) and interleukin 1 (IL-
1), most studies have focused on their possible role in
emphysema, particularly via MMP production. In animal
models administration of aerosolised alveolar macrophages
produces emphysema,40 as does overexpression of MMP-1.62

Use of a broad spectrum MMP inhibitor attenuates both the
initial inflammatory response and the severity of emphysema
in guinea pigs exposed to cigarette smoke.63 In vitro, cultured
alveolar macrophages taken from subjects with COPD express
increased amounts of both MMP-1 and MMP-961 while, in
vivo, immunoreactivity for MMP-2 and MMP -9 is demon-
strably increased in COPD.64

MMP-12, in particular, has been a focus of increasing
attention in emphysema. In mice, deficiency of MMP-12
appears to be protective against cigarette smoke induced lung
destruction.65 In vivo, airway and alveolar macrophage MMP-
12 expression in COPD subjects is enhanced compared with
healthy controls.66 67 Recent evidence, moreover, suggests that
the role of MMP-12 may go beyond matrix degradation. In
mouse models its presence is required for cigarette smoke
induced neutrophil influx into the lung,68 69 possibly via
release of the pro-inflammatory cytokine tumour necrosis

Figure 1 MUC5AC expression in the bronchial epithelium of a smoker
with COPD. The photomicrograph shows immunohistochemical
MUC5AC staining using an anti-MUC5AC antibody in a GMA
embedded bronchial biopsy specimen.

Figure 2 Neutrophils infiltrating bronchial submucosa and epithelium
in a smoker with COPD. The photomicrograph shows
immunohistochemical cytoplasmic staining using an anti-
myeloperoxidase antibody in a GMA embedded bronchial biopsy
specimen.
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factor a (TNF-a) with subsequent upregulation of vascular
adhesion molecule VCAM-1.70 This supports the view that
neutrophils and macrophages are co-dependent on one
another to produce an elastolytic inflammatory response in
airways exposed to cigarette smoke.70

Studies of emphysematous lung tissue from human
subjects have shown a direct relationship between alveolar
macrophage density in the parenchyma and the severity of
lung destruction.71 Moreover, numerous investigations have
found macrophage numbers to be increased in the bronchial
submucosa,14 16 17 19 72 bronchial glands,18 and small airways
epithelium73 of subjects with COPD. Macrophage counts in
induced sputum or bronchoalveolar lavage (BAL) fluid in
COPD vary depending on whether relative or absolute cell
counts are used. Relative macrophage counts are often
reduced,14 15 74 a reflection, most likely, of increased neutro-
phil percentages. Absolute counts, on the other hand, are
increased both in sputum46 and BAL fluid.48 59 75

T lymphocytes
In asthma the CD4+ T cell is the proposed orchestrator of a
Th2 type immune response in the airways.76 In COPD the
CD8+ cell is the accepted crucial lymphocyte subtype. An
increase in total T cells (CD3+ cells), which includes both
CD4+ and CD8+ cells, occurs in the alveolar walls in
emphysema,10 21 but CD8+ cells are predominant.21

Increased CD8+ cell numbers are also found in both the
large19 and small20 73 airway walls in COPD and in peripheral
airway smooth muscle.57 Figure 3 shows CD8+ cells infiltrat-
ing the bronchial submucosa and epithelium in a bronchial
biopsy specimen.

Speculation has surrounded the role of CD8+ cells in
emphysema. A key function of the CD8+ cell is to combat
viruses either by cytolysis of infected cells or induction of
apoptosis.77 78 Collateral tissue damage is a possible conse-
quence; in respiratory syncytial virus (RSV) infected mice, for
example, excessive CD8+ cell activation results in potentially
lethal pulmonary damage.79 In smokers infected with human
immunodeficiency virus (HIV), high CD8+ cell numbers in
BAL fluid have been associated with an accelerated onset of
emphysema.80

If CD8+ cells destroy lung parenchyma, the mechanism is
uncertain. They have, in theory, the potential to damage the
lung interstitium directly via release of lytic substances such
as perforin and granzyme.81 It was observed recently that
CD8+ cells recovered from the sputum of COPD patients

display higher levels of perforin expression and increased
cytotoxic activity than CD8+ cells taken from control
subjects.82 Another possibility is that CD8+ cells induce
structural cell apoptosis.21 Alveolar cell turnover does appear
to increase in emphysema as increased numbers of alveolar
epithelial and endothelial cells undergo both proliferation
and apoptosis.83–85 Moreover, an association has been
observed between apoptosing cell numbers and CD8+ T cell
numbers in the alveolar walls.21 The possibility remains,
however, that such associations are a secondary phenom-
enon. Given their potential suppressor function, the infiltrat-
ing CD8+ cells may actually serve to inhibit the inflammatory
process. Further studies are needed to define the activity of
infiltrating CD8+ cells in emphysema.

Prior activation of T cells by antigen presentation is
generally required before they can infiltrate non-lymphoid
tissue such as the lung. Although the nature of the proposed
antigen in COPD is unknown, two hypotheses have been put
forward. Enelow and colleagues demonstrated that recogni-
tion of a lung ‘‘autoantigen’’ by T cells can produce lung
injury in the absence of a viral stimulus, and this damage was
mediated or amplified by non-antigen specific inflammatory
cells such as macrophages.86 It was therefore hypothesised
that repetitive injury to the lung, as a result of chronic
smoking and inflammation, results in structural alteration of
self-antigens allowing them to be recognised by T cells.21

Alternatively, a persistent intracellular pathogen may provide
a foreign antigenic stimulus. One such candidate is adeno-
virus, as suggested by Retamales and colleagues87 who found
a 41-fold increase in alveolar epithelial cells expressing the
adenoviral transactivating protein E1A in subjects with
severe emphysema compared with healthy smokers.

A number of molecules have been proposed to mediate
pulmonary T cell infiltration in COPD. RANTES (regulated
upon activation, normal T cell expressed and secreted), a
potent chemoattractant that is overexpressed in exacerba-
tions of chronic bronchitis,88 is believed to act synergistically
with CD8+ cytolytic cells to enhance apoptosis of virally
infected cells.89 90 It was therefore postulated that, when
CD8+ cells predominate, recurrent viral infections with
resulting increased RANTES levels may promote CD8+ cell
mediated tissue damage.88 Th1 type cycle of inflammation
has also been suggested; in COPD airways infiltrating CD8+
cells express more of the chemokine receptor CXCR3, its
ligand CXCL10, and the inflammatory cytokine interferon c
(IFN-c). This has led to the suggestion that an inflammatory
insult induces increased airway expression of CXCL10 and
IFN-c, that this recruits CXCR3 bearing CD8+ cells, and that
these—via expression of IFN-c—could induce further
CXCL10 expression thus perpetuating a cycle of CD8+
inflammation.91

The function of CD4+ cells in COPD is unknown. CD4+
cells, in addition to CD8+ cells, are increased in the small
airway walls of smokers with severe COPD.73 They have the
potential to contribute to the inflammatory process via
production of a variety of pro-inflammatory cytokines
including TNF-a and granulocyte-macrophage colony-stimu-
lating factor (GM-CSF), the Th1 agents IFN-c and IL-2, and
the Th2 agents IL-4, IL-5, and IL-6. It has also been
hypothesised that their actions as T helper cells, priming
CD8+ cytotoxic responses, maintaining their memory and
ensuring their survival, may be as important to the
development of emphysema as the CD8+ cells themselves.21

Natural kil ler (NK) T lymphocytes
NK cells are a distinct population of specialised cytotoxic
lymphocytes that target transformed or virus infected
cells.92 93 Although the function of NK cells in COPD has
not been widely studied, one investigation suggested that

Figure 3 CD8+ cells infiltrating both submucosa and epithelium in a
smoker with COPD. The photomicrograph shows immunohistochemical
membrane staining using an anti-CD8 antibody in a GMA embedded
bronchial biopsy specimen.
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they are found in increased numbers in the large airway
submucosa of smokers with COPD, with the hypothesis that
excessive NK cell recruitment in COPD occurs due to repeated
viral or bacterial infections.16 However, a study measuring
lymphocyte subpopulations in the alveolar walls of non-
smokers, healthy smokers, and smokers with emphysema
found no increase in NK cell numbers in subjects with
emphysema.21

Eosinophils and mast cells
Although eosinophils and mast cells are important effector
cells in asthma, neither has been ascribed a prominent role in
COPD. In exacerbations of COPD airway wall eosinophilia
has been observed at a level similar to that found in
asthma,88 94 with an associated increase in RANTES expres-
sion by airway subepithelial and epithelial cells.88 In stable
COPD, increased eosinophil counts have been found in
sputum,74 BAL fluid,48 and in the airway wall.22 54 95

Increased levels of eosinophilic cationic protein (ECP) in
BAL fluid96 and induced sputum46 97 98 have also been
observed. However, some studies have failed to confirm that
any airway eosinophilia occurs in COPD,15 17–19 22 99 while
others have suggested that the eosinophils, even if they are
present, are not activated.14 22 The mechanism underlying
eosinophilic infiltration seems to differ from asthma in that
the key chemokines IL-4, IL-5 and eotaxin do not appear to
be overexpressed in COPD airways.54 It has been hypothesised
that any influx of these cells is merely a by-product of
smoking induced inflammation. A possible mediator is the
chemokine IL-8. Although normally associated with neutro-
phil chemotaxis, IL-8 exerts a chemotactic effect on primed
eosinophils100 101 and correlates with BAL fluid levels of ECP
in chronic bronchitis.52

Some reports have shown that increased numbers of
eosinophils in sputum74 102 103 and BAL fluid104 taken from
COPD subjects are predictive of a clinical response to steroid
treatment. These results might suggest that eosinophils play a
role in a clinical subset of COPD that has inflammatory
features in common with that of asthma. However, the two
diseases remain, in general, phenotypically dissimilar as even
subjects with asthma who have fixed airflow obstruction
have significantly higher percentages of eosinophils and
lower percentages of neutrophils in both sputum and BAL
fluid than COPD patients with similar disease severity.105

The ability of mast cells to release an array of mediators has
invited speculation regarding their possible role in COPD
inflammation. This could include neutrophil recruitment via
the release of chemotactic factors, tissue injury by the actions
of the secreted enzymes tryptase, chymase and elastase, and
mucus hypersecretion via the potent secretagogue action of
mast cell chymase.106 Some studies of COPD airways have
revealed increased mast cell numbers in the airway wall.107 108

In addition, one study which found that mast cell degranula-
tion in the bronchial gland layer appeared more marked in
subjects with chronic bronchitis than in healthy controls
suggested that increased mast cell activity may also be
present.108 These findings are countered, however, by reports
displaying no evidence of mast cell abundance in either the
airways or parenchyma in COPD subjects.16–18 73 94 99

OBSTACLES TO RESEARCH INTO COPD
INFLAMMATION
A detailed profile of disease phenotype specific inflammation
has yet to emerge in COPD. There are many reasons for this,
but chief among them may be the very nature of the
condition itself. COPD is a heterogeneous disease, so the
pathological significance of inflammatory cell measurements
is often difficult to divine. The clinical severity varies
considerably, asymptomatic disease is common,109 110 and

interobserver variability exists in the detection of physical
signs allowing mild cases to go undetected.111 112 Moreover,
none of the common clinical tests give a complete picture of
the disease. Spirometric tests are inadequate for the detection
of early COPD,113 114 airflow obstruction severity is a poor
predictor of symptom severity,115 and impairment of carbon
monoxide gas transfer is not specific to emphysema and may
occur by separate mechanisms in smokers.116–119

Linkage of lung function readings to the underlying
pathology is hampered by the fact that both peripheral
airway remodelling4 120 121 and emphysema6 7 122 result in
airflow obstruction while emphysema is commonly found
in smokers who have not developed airflow obstruction at
all.113 114 Thus, characterisation of research subjects based
only on clinical impression and lung function—as was the
case with many studies14 20 95—fails to provide a clear insight
into the underlying pathology. Neutrophil studies provide a
prime example of the importance of distinguishing COPD
phenotypes. Sputum neutrophil counts correlate with the
severity of airflow obstruction in COPD,15 19 and smokers with
severe emphysema have neutrophilic inflammation in the
alveolar walls and air spaces.87 However, in mild emphysema
there is neither BAL49 nor alveolar neutrophilia,87 even though
BAL fluid levels of neutrophil degranulation products and the
neutrophil chemokine IL-8 are increased.49 123 Mild emphy-
sema would often go undetected on lung function testing so,
without the use of CT scanning, such patients would be
classified as healthy smokers.

A further obstacle is that the most practical investigative
techniques have natural limitations. The predominant
pathology is found in the not easily accessible peripheral
airways and lung parenchyma. To what extent proximal
airway biopsies represent events in the distal lung is
uncertain. Although BAL and induced sputum sample more
distally, the correlation between luminal and tissue inflam-
mation is also unknown. Moreover, the results depend on the
protocol in use. Inflammatory cell numbers vary depending
on the lung region sampled, with neutrophils more numerous
in the proximal bronchial tree and macrophages predominant
more distally. Digital subtraction angiography has shown
that BLF (fluid aspirated back from the initially instilled
aliquots) samples proximal airways, whereas successive
aliquots (BAL fluid) may reflect distal airway and alveolar
events.124 Thus, in healthy smokers neutrophil percentages
decline in successive BAL fluid aliquots.125 Sputum induction,
similarly, is prone to sampling effects. In subjects with COPD,
induced sputum contains higher percentages of neutrophils
and lower percentages of macrophages than BAL fluid, most
probably because the more proximal airways are
sampled.14 126 However, increasing the duration of the
induction results in a progressive reversal of these propor-
tions, possibly due to increasingly peripheral airways
sampling.127 Standardisation of induction duration is there-
fore important if reliable comparisons are to be made
between different centres.

Prominent studies of airway inflammation in COPD have
had conflicting results. Some investigations which showed
CD8+ T lymphocyte infiltration of the airways19 20 have not
been confirmed by others.14 16 Macrophage infiltration has
similarly been both confirmed17 59 and refuted,20 95 while
studies measuring neutrophils, eosinophils, and mast cells in
airway wall and sputum have also produced inconsistent
results.

The potentially crucial impact of infection and exacerba-
tions on airways inflammation and disease severity remains
unquantified. Frequent exacerbations of COPD are associated
with a faster decline in forced expiratory volume in 1 second
(FEV1) over time.128 Exacerbations are also associated with
raised sputum counts of lymphocytes, neutrophils, and
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eosinophils.129 In the airway wall, similarly, both neutrophilia
and eosinophilia are observed, as is overexpression of related
chemokines IL-8, CXCL5 and RANTES.55 88 94 Bacterial infec-
tions, specifically, have been linked to increases in both
neutrophil activation markers and associated inflammatory
mediators including myeloperoxidase (MPO), NE, LTB4 and
IL-8.130 131 Even in the absence of acute infection, airway
bacterial colonisation is well recognised in COPD.132 Such
colonisation has been correlated with airway neutrophil
activation,133 sputum levels of the pro-inflammatory cyto-
kines IL-8, LTB4 and TNF-a,134 135 airflow obstruction
severity,136 and a more rapid decline in FEV1 over time in
smokers.137 It has been hypothesised that chronic lower
airway bacterial colonisation may accelerate the development
of airflow limitation via both increased airway inflammation
in stable disease and by predisposing to more frequent
exacerbations.133 137 138 Although most studies relating inflam-
mation to clinical disease severity have excluded acute
infection from their subjects on clinical grounds, airway
colonisation has not been ruled out to the same extent.

The effects of current smoking remain uncertain. Most
investigators have preferred to record the pack year history
instead. Rennard and colleagues showed that short term
smoking reduction is associated with a reduction in airway
inflammation in heavy smokers.139 Willemse and colleagues
found a positive association between current smoking and
macrophage numbers in both sputum and bronchial biopsy
specimens.140 Other investigators have shown, however, that
current and ex-smokers with COPD have similar degrees of
inflammation in bronchial biopsy141 and induced sputum142

samples. Thus, although intuitively one would expect the
ongoing insult to the airways to be relevant, the jury remains
out as to whether differences in current smoking contribute
to the variability of results between different studies.

Thus, to date, diverse methods and, often, diverse results,
have contributed to uncertainty surrounding the inflamma-
tory profile of COPD. If future anti-inflammatory strategies
are to be tested, then measurements of inflammation before
and after treatment in bronchoscopic or sputum samples may
be necessary. More clarity is needed as to the strength of the
relationships between proximal airway inflammation, distal
airway inflammation, and lung pathology.

CONCLUSION
That airway inflammation is central to the pathogenesis of
COPD appears beyond doubt. However, studies to date have
varied widely in terms of the depth of disease characterisa-
tion, their allowance for confounding factors such as current
smoking and infection, and the investigative methodologies
employed. Future studies need to clarify the relationship
between each specific inflammatory cell type and each of the
remodelling and destructive processes found in COPD
airways. Further research combining well validated techni-
ques—specifically, comparison of preoperative endobronchial
biopsy samples with examination of resected lung specimens
and careful patient phenotyping—may help.
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